There are 408 articles for you to read.

Exploring Integrative Analysis of Multi-Omics Data from Public Repositories

Author: gene_x

Abstract: 1. Integration and analysis of multi-omics data: Explore the integration of different types of omics data (e.g., genomics, transcriptomics, proteomics) from public repositories to uncover novel biolog

Defining and Categorizing Promoter Types Based on the 'GRGGC' Motif Frequency and Distance to TSS

Author: gene_x

Abstract: 1. generate_promter_sequences #!/usr/bin/env python3 #./1_generate_promoter_sequences.py gencode.v43.annotation.gtf.db import gffutils from pyfaidx import Fasta import argparse from Bio i

Antibodies and cell lines that are commonly used in research

Author: gene_x

Abstract: >http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeBroadHistone Antibody: - CBP (SC-369) - H3K4me1 - H3K4me2 - H3K4me3 - H3K9ac - H3K9me1 - H3K9me3 - H3K27ac - H3K27me3 - H3K36me3 - H3K79me

Gonna、wanna、gotta

Author: huang

Abstract: 1. Gonna 將會 Gonna 是 (be) going to 的非正式用法,表示「某人將會/將要做某事」的意思,常見於口語對話或是流行歌曲中,是一種比較輕鬆的表達方式,其句型為「主詞+be 動詞+gonna+原形動詞」。 A: Dylan, do you have any plans for Chinese New Year ? A:Dylan,你農曆年有沒有什麼計畫? B: Oh

Identifying the Nearest Genomic Peaks within Defined Regions

Author: gene_x

Abstract: To find the closest peaks in the genome regions defined by a bed file, you can use a tool like BEDTools. BEDTools provides a function `closest` which allows you to find the closest feature in a second

LiftOver: An Essential Utility for the Conversion of Genomic Coordinates

Author: gene_x

Abstract: If you have genomic coordinates (like gene positions, SNP positions etc) in hg19 and want to convert them to hg38, you'd use what's known as a "liftover". The UCSC Genome Browser provides a tool speci

Analysis of Peak Distribution in Promoters

Author: gene_x

Abstract: import pprint import argparse import matplotlib.pyplot as plt import pandas as pd import gffutils import numpy as np #db = gffutils.create_db('gencode.v43.annotation.gtf', dbfn='gencode.v43.an

Clustering of Promoter Types Based on Motif Frequency and Distribution

Author: gene_x

Abstract: To implement the clustering of promoter types based on motif frequency and distribution using Python, you can follow these steps: 1. Import the required libraries: import pandas as pd import num

Snakefile

Author: gene_x

Abstract: import os ####################################################### ############### Snakefile Configuration ############### ####################################################### configfile: "ba

单细胞RNA测序数据分析步骤

Author: gene_x

Abstract: 单细胞RNA测序数据分析的具体步骤包括以下几个阶段: 1. 数据预处理:这一步涉及到对原始测序数据进行质量控制,包括移除低质量的测序读段,对读段进行修剪,以及对可能的污染序列进行识别和移除。这一步骤是为了确保后续的分析基于的是高质量的数据。 2. 比对和定量:接下来的步骤是将预处理后的读段比对到参考基因组上,并且对每个细胞中每个基因的表达量进行定量。比对可以使用如STAR, HISAT2等工具


© 2023 XGenes.com Impressum